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THE J!<E 3F FROTOKATION Ih'DUCE3 CHANGES IK CARBON-13 WMR ?HEM JCAT 

SHIFTS TO INVESTIGATE THE SOLIJTTOY MIC30SCOPIC 

STRUCTUPE Or PARTIALLY I'ROTOYATKD ?OLY,YSASIC MOT,'X!!T.ES 

Keywords : Protonat ion  , DTPP., 4-Pyridone Carbon-113, NYF 

Joscph 5. Sarneski,;? Henry L. Surprenant  and Char les  U. i e j l l e y  
Depar tmcnt of Chemistrv 

l l n i v e r s i t y  of North Carol ina  
Chapel H i l l ,  N . C .  27514 

ABSTRACT -- 

Changes i n  t h e  biM2 chemical s h i f t  o f  carbon-13 n u c l e i  upon 
p r o t o n a t i o n  of a nearby b a s i c  c e n t e r  are shown t c  be a u s e f u l  
method of probing t h e  microscopic  s i t e  of p r o t o c a t i o n  of  molecules 
c m t a i n . i n z  m u l t i p l e  b a s i c  c e n t e r s ,  such as diethylenetrianinepenta- 
a c e t i c  a c i d  (DT?A). This  approach is a l s o  shown t o  suppor t  t h e  
predominance of t h e  p y r i d i n c  amine pro tona ted  tautomer i n  t h e  
4-pyridone ++ Q-hydroxyp;rridine eoui l ibr imr. .  

TNTR3CUCTION 

Acid-base p r o p e r t i e s  i n  so lu- t ion  are g e n e r a l l y  formulated i n  

terms of i o n i z a t i o n  c o n s t a n t s  (pK,'s) which d e s c r i j e  t h e  a f f i n i t v  

o? a base for  a hydrogen ion.  Far  po lybas ic  moleculcs  t h e s c  macro- 

scopic  consTants are o f t e n  not  f u l l y  d e s c r l p t j v e  s i n c e  t h e y  do n o t  

d e f i n e  wklch b a s i c  c e n t e r  (or c e n t e r s )  are be ing  pro tona ted  a t  3 

Fiven pKa. The microscopic  i o n l z a t i o n  c o n s i a n t s  which d e s c r i b e  

t h e  proton a f f i n i t y  of  t h e  indivSduaS b a s i c  c.cnters a t  t h e  molecular 

l e v e l  a re  chemical ly  more i n f o r n a t i v e .  T o  d e f i n e  t h e  microscopic  

pro tona t ion  behavior  of polybas ic  mslecules  one must b e  a i l e  t o  

deiermine f r a c t i o n a l  F r o t o n a t i o n  of each b a s i c  c e n t e r  a t  a given 

f<Present  address: Depar Lmcnt of Chcmis try, F a i r f i e l d  Univers i ty  
F a i r f i e l d ,  Connect icut  06430 
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886 SARNESKI, SURPRENANT, AND REILLM 

macroscopic pKa. A number of exper imenta l  procedures  have been used 

t o  a c q u i r e  t h i s  fundamental in format ion  and t h e s e  have been reviewed 

elsewhere.  1 3 2  

In  t h i s  paper  w e  d e s c r i b e  t h e  use of  carbon-13 IWR spectra t o  

examine t h e  microscopic  p r o t o n a t i o n  of t h e  conjugate  base  of  d i e t h y l -  

ene t raaminepentaace t ic  a c i d  (DTPA) and t h e  tau tomer ic  equi l ibr ium 

i n  4-hydroxypyridine t--t 4-pyridone. 

s p e c i e s  i n  s o l u t i o n  s i n c e  chemical  s h i f t s  of magnetic n u c l e i  n e a r  

b a s i c  s i t e s  are o f t e n  markedly inf luenced  by t h e  i o n i z a t i o n  s t a t e  

of t h e  b a s i c  c e n t e r .  Proton NMR w a s  shown t o  be  very  u s e f u l  f o r  

such work some y e a r s  ago 

t romet ry5  begun t o  see  a p p l i c a t i o n  i n  t h i s  a r e a .  

possesses  c e r t a i n  advantages over  pro ton  NMR and 1 3 C  s p e c t r a  should 

see cons iderably  more use i n  t h e s e  a p p l i c a t i o n s .  

i n h e r e n t l y  l a r g e r  s h i f t  range t h a n  'H, 200 ppm - v s  10 ppm, making 

13c p o t e n t i a l l y  more s e n s i t i v e  t o  p r o t o n a t i o n .  

d a I a  for 13C and 'H n u c l e i  on amine p r o t o n a t i o n  r e v e a l s  0 .5  ppm and 

0.3 ppm downfield s h i f t s  f o r  a and B protons  on pr imary amine 

p r o t o n a t i ~ n , ~  whi le  1 3 C  n u c l e i  a and B show 2 and 5 ppm u p f i e l d  

p r o t o n a t i o n  s h i f t s .  

p ro ton  n o i s e  decoupl ing g i v e  carbon resonances which are sharp  

s i n g l e t s ;  o f t e n  proton s p e c t r a  a r e  complex due t o  s i g n i f i c a n t  sp in-  

s p i n  coupl ing  i n t e r a c t i o n s  and over lapping  of  m u l t i p l e t s .  A t h i r d  

advantage of carbon NMR e x i s t s  f o r  molecules  b e a r i n g  f e w  (or no)  

pro tons  near  t h e  b a s i c  c e n t e r s  t o  be monitored,  e . g .  i n  p u r i n e  

bases  and n u c l e o t i d e s .  

NMR i s  a u s e f u l  probe o f  micro 

3 ,'+ and only  r e c e n t l y  has  carbon-13 spec- 

Carbon-13 NMR 

F i r s t  13C has an 

A comparison of 

Secondly carbon NM4 s p e c t r a  r u n  normally with 

EXPERIMENTAL 
Details r e g a r d i n g  s o l u t i o n  p r e p a r a t i o n  and NMR s p e c t r a l  

measurements w e r e  i d e n t i c a l  t o  t h o s e  c i t e d  previous lv .  

were obta ined  commercially. 

Reagents 

The 1 3 C  s p e c t r a  were measured a t  25 .2  MHz.  

p H  measurements were made with an Orion model 6 0 1  d i g i t a l  pH 

meter  us ing  a combination e l e c t r o d e .  p H  d a t a  p r e s e n t e d  i n  t h i s  

paper a re  dir lect  ins t rument  r e a d i n g s  and have not  been c o r r e c t e d  

f o r  t h e  presence o f  D20. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
4
:
2
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



PARTIALLY PROTONATED POLYBASIC MOLECULES aa7 

The anapgs is  of t h e  NMR-pH t i t r a t i o n  d a t a  shown i n  Figure 2 

was performed wi th  a non- l inear  l e a s t  squares  program w r i t t e n  i n  

t h e s e  l a b o r a t o r i e s .  This  program f i t s  t h e  chemical s h i f t  pH 

d a t a  t o  o b t a i n  t h e  chemical s h i f t s  for each l i n e  of each s p e c i e s  

and all pK,'s. 

m e  input .  The prograni then  modif ies  t h e s e  e s t ? m a t e s ,  a t tempt ing  

t o  minimize t h e  root-m.ean-square d e v i a t i o n  between t h e  c a l c u l a t e d  

and observed chemical s h i f t s .  Convergence i s  r a p i d ,  u s u a l l y  wi th in  

4 or 5 i t e r a t i o n s ,  even f o r  systems with 5 b a s i c  s i t e s .  Important 

p o i n t s  t o  iiote a r e  t h a t  t h e  program weights  a l l  p o i n t s  equal lv ,  

and t h a t  a l l  l i n e s  a r e  handled s imultaneously.  We f e e l  t h a t  t h i s  

y i e l d s  macroscopic pKa's which a r e  t r u l y  r e p r e s e n t a t i v e  of a l l .  t h e  

d a t a ,  and a r e  not  b iased  by one l i n e .  

from t h i s  a n a l y s i s  with ear l ie r  l i t e r a t u r e  da td  ( 1 0 . 5 6 ,  8 . 6 9 ,  4 .37 ,  

2 . 8 7 ,  1 . 9 4 )  i s  q-uite good. 

I n i t i a l  e s t i m a t e s  of  t h e  chemical s h i f t s  an5 pKa's 

Agreement o f  pK,'s derived 

7 

XESULTS AND DISCUSSION 

The conjugate  base ( I )  o f  diethylenetriaminetetraacetjc a c i d  

i s  a s p e c i e s  which can accept  an equiva len t  

DTPA 5- 

of a c i d  t o  form a number of microscopica1.ly d i s t i n c t  s p e c i e s  a s  i s  

depic ted  schemat ica l ly  i n  F igure  1. E a r l i e r  c h a r a c t e r i z a t i o n  of 

t h e  l 3 C  p ro tona t ion  s h i f t s  of  a l i p h a t i c  am<nes6 and carboxyl ic  

dcidS 

wi th  pH can a i d  i n  e v a l u a t i n g  t h e  microscopic  b a s i c i t y  o f  t h e  var ious  

b a s i c  c e n t e r s  of DTPA. 

on r e l a t i v e  i n t e n s i t y  of s i g n a l s  ( t e r m i n a l  a c e t a t e  s i g n a l s  be ing  four 

t imes a s  i n t e n s e  as s i g n a l s  from c e n t r a l  a c e t a t e  arm) and comparison 

of chemical s h i E t s  with model compounds; t h i s  i s  g iven  on Figure 2 

WFlich also d e p i c t s  t h e  e f f e c t  o f  pH on t h e  i n d i v i d u a l  resonances.  

8 
sugges ts  t h a t  a s tudy of  t h e  v a r i a t i o n  of  t h e  1 3 C  s h i f t s  

Assignment of t h e  13C spectrum of UTPA based 

The i n i t i a l  a d d i t i o n  o f  a c i d  t o  DTPA5- produces pronounced 

u p f i e l d  s h i f t s  of t h e  t e r m i n a l  and c e n t r a l  carboxyla te  carbon 
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aaa SARNESKI, SWRENANT, AND REILLEY 

Hacroscop ic  Designation Kicroscopic S p e c i e s  

DTPA5- 

HDTPA“- 

H2DT?A3- 

etc. 

0 
0, I ’ 0  

0’ ‘ 0 
N - N - N ,  

... 

etc. 

FIG.  1 Microscopic Pro tona ted  Forms o f  DTPA 

resonances.  

shifts observed for amine protonation i n  a-amino acids, an example 

of which is ?4 ,N-dimethylglyciue (N ,M-Me2glyJ : 

This r e s u l t  is  consistent with t h e  I 3 C  p r o t o n a t i o n  

TABLE 1 

2 5 . 2  MHz Carbon-13 Protonat ion  S h i f t s  
(Ha; n o s i t i v e  s h i f t  = downfield) f o r  N,N-dimethylglycine 

G r o u p  Protonated ( C i i 3 ) ~  - N - CH, - COOo 

7 +56 +57 
H O  

coo- f COOK - 1  
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PARTlALLY PROTONATD POLYBASIC MOLECULES 889 

D T P A  

1 4 1  

p H  
4 

p K2 
2 

r-- 
4 6 0 0  4 4 0 0  4 2 0 0  1 6 0 ~  14 0 0  1. 

I 
0 0  

I3C C h e m i c a l  S h i f t  v c  T M S  

FIG.  2 Effect of p € l  on the Carbon-13 Resonances o f  DTPA 

In t h e  r e c i o n  of  pi,& t h e  two k i n d s  of a c e t a t e  v .e thylene csrbor.s also 

e x n t b i t  c m a l l e r  u p f i e i d  shifts. These data shown i n  l ' ig i i re  2 i n d i -  

cate p r o t o n a t i o n  o f  b o t h  t h e  central and terminal amlno p o u m  (1: 

and 111) at pk.5. T h e  s:mildr mic roscop ic  b a s i c i t y  3f these txqo 

types oE t e r t i a r y  aiiiines i s  not unexpected.  

R d d i t i c n  of a second e q u i v a l e n t  of d c i d  causes a r , e v e r s a l  i n  

t h e  protonat icn sh i f t  of t h e  central cdrboxylate carbon resonance 

w h i c h  the  first e q u i v a l e n t  o f  aci:'. had produced.  Simultar iecusly thc 

t e r m i n a l  C=?: resonance corit inue.5 its u p f i e l d  shift i n d i c a t i v e  of 

p r o t o n a t i  on of t h e  t e rmtna l  amine n i i r o g c n s .  These o b s e r v a t i m s  
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890 SARNESKI, SURPRENANT, AND REILLEY 

sugges t  t h a t  d i p r o t o n a t i o n  o f  DTPA5- o c c w s  p r e f e r e n t i a l l y  on t h e  

t e r m i n a l  n i t r o g e n s  (IV). 
t o n a t e d  a t  t h e  c e n t r a l  amino group (111) a t  pK5 r e a r r a n g e s  upon 

f u r t h e r  a d d i t i o n  o f  a c i d  t o  g ive  t h e  d i - t e r m i n a l l y  pro tona ted  i o n  

(IV); however, i t  a p p e a r s  t h a t  some v i c i n a l l y  d i p r o t o n a t e d  i o n  (V) 
might a l s o  be  p r e s e n t  because t h e  sh i f t  o f  t h e  c e n t r a l  C=O a t  pH = 

6 . 5  ( 2  e q u i v a l e n t s  a c i d  added) is s t i l l  40 H z  u p f i e l d  from t h e  

chemical  s h i f t  o f  t h e  DTPA5- s p e c i e s  (pH = 12.7) where t h e  c e n t r a l  

amino group i s  completely unprotonated.  

conformat iona l  d i f f e r e n c e s  between DTPA5- and H2DTPA3- (even i f  

t o t a l l y  i n  form IV) could  also account  i n  p a r t  f o r  t h i s  40 Hz d i f f e r -  

ence in s h i f t s  observed f o r  t h e  c e n t r a l  C=O resonance .  Never the less  

t h e  d a t a  i n d i c a t e  t h a t  t h e  t e r m i n a l  amino n i t r o g e n s  are s i g n i f i c a n t l y  

more b a s i c  t h a n  t h e  c e n t r a l  amine a t  pK4. 

ment wi th  e a r l i e r  p o s t u l a t e s  based on p r o t o n  NMR d a t a . 3  

Sehavior  may arise as a means of g a i n i n g  maximum s e p a r a t i o n  of  t h e  

p o s i t i v e l y  charged ammonium c e n t e r s  i n  H2DTPA3- or, perhaps ,  t o  a l l o w  

t h e  two p r o t o n s  t o  be  s t a b i l i z e d  as c h e l a t e d  pro tons  by t h e  imino- 

d i a c e t a t e - t y p e  t e r m i n a l  groupings.  

Thus some o f  t h e  HDTPA4- o r i g i n a l l y  pro- 

One must be  mindfu l  t h a t  

This  f i n d i n g  i s  i n  agree-  

This  

With t h e  a d d i t i o n  o f  a t h i r d  e q u i v a l e n t  o f  a c i d  t h e  c e n t r a l  

C=O resonance  once a g a i n  exper iences  a l a r g e  u p f i e l d  p r o t o n a t i o n  

s h i f t ;  i ts  a c e t a t e  methylene carbon a l s o  shows an u p f i e l d  movement. 

S i g n i f i c a n t l y  t h e  chemical  s h i f t s  of t e r m i n a l  a c e t a t e s ’  carbon-13 

resonances  show l i t t l e  i n f l u e n c e  o f  t h e  added a c i d  i n  t h e  r e g i o n  of  

pK3. These f i n d i n g s  are compatible  w i t h  p r o t o n a t i o n  a t  t h e  c e n t r a l  

amine n i t r o g e n  t o  g i v e  s p e c i e s  (VI). However, some p r o t o n a t i o n  o f  

t h e  c e n t r a l  carboxyla te  group (VII) would a l s o  be  expected t o  

produce similar r e s u l t s  ( s e e  d a t a  f o r  N,N-Mezgly). The two micro- 

s c o p i c  f o r m s  cannot  be  q u a n t i t a t e d  from thc p r e s e n t  d a t a  b u t  t h e  

magnitude of p r o t o n a t i o n  s h i f t  f o r  t h e  C=O resonance wi th  a d d i t i o n  

of t h e  t h i r d  e q u i v a l e n t  of a c i d ,  -100 Hz, appears  t o  f a v o r  amine 

p r o t o n a t i o n  even though t h i s  s p e c i e s  (VT) would j u s t a p o s e  t h r e e  

p o s i t i v e  charges  on t h e  a l k y l  cha in .  

F u r t h e r  e q u i v a l e n t s  of a c i d  produce much smaller p r o t o n a t i o n  

s h i f t s  i n  t h e  C = O  r e g i o n  and i n v o l v e  predominant ly  p r o t o n a t i o n  o f  

t h e  carboxyla te  groups.  I n t e r p r e t a t i o n  of  p r o t o n a t i o n  s h i f t s  i n  
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PARTIALLY PROTONATED POLYBASIC MOLECULES 89 1 

t h i s  r e g i o n  a p p e a r  t o  be compl i ca t ed  b.7 c o n f o r m a t i o n a l  i n f l u e n c e s  

and w i l l  n o t  he  d i s c u s s e d  f u r t h e r  h e r e .  

Another s i t u a t i o n  where 1 3 C  p r o t o n a t i o n  s h i f t s  c o u l d  con*Lr ibu le  

t o  d e f i n i n g  mic ro%cop ic  i r .olecular  p r o p e r t i e s  i n  s o l u t i o r :  i s  I:] t h e  

t a u t o m e r i c  e q u i l i b r i u m ,  4-pyridone 4 - n y d r o x y ~ y r i d i n e  (Vl I l ) .  A 
OH 

1-1 

n m 5 w  o f  s p e c t r o s c o p i c  and t h e o r e t i c a l  s t u d i e s  have I n v e s t i E a t e d  t h e  

t au to rne r t c  e q u i l i b r i a  i n  t h l s  compound (as rev iewed  i n  Ref.  9) and 

o r h e r  s imi l a r  aza -a romat i c  r i n g  s y s t e m s ,  e . g .  t h e  p u r i n e  b a s e s .  

and n i ~ t r o g e n - l b  NMR More r e c e n t l y  p ro ton  , carbon-  1 3  1 3  lo,?: 11 ,12  

s t u 6 i e s  have focused  on t h e  pv r idone  fi h y d r o x y y r i d i n e  e q u i l i b r i a .  

El; corn2aring chemical  s h i f t s  o f  v a r l o u s  magne t i c  n u c l e i  i n  t h e  

pctrent mo lecu le  and N- and 0- n e t h y l a t e d  d e r i v a t i v e s  the LL-qridcne 
1 3  f o r m u i a t i o n  seems m i c r o s c o p i c a l l y  a p p r o p r i a t e  i n  ace toce -me thano l  

11 s o l u t l o n s  2nd in d i r n c t ~ i y l s u l p h o x i d e  . 
Some r e c . r n t  s t i d i e s  we have begun on t h e  carbon-13 p r o t o n a t i o n  

s h i f t s  expe1.ience.d by a r o m a t i c  r i n g  ca rbons  i n  p y r i d i n e  molecu le s  

and P h e n o l i c  sys t ems  s u g g e s t  t h a t  p r o t o n a t i o n  s h i f t s  may be a 

u s e f u l  approach t o  examine t h e  py r idone  <++ h y d r o x y p - p i d i n e  t a u t o m e r i c  

e q u i l i b r i u m .  P r o t o n a t i o n  of a p y r i d i n e  t y p e  n i t r o g e n  i n  soueous  

s o l u t i o n  erqer idcrs  c h a r a c t e r i s t i c  s h i f t s  i n  t h e  r i n g  ca rbon  s h i f t s ;  

t h e  1 3 ~  p r o t o c a t i o n  s l i i f l s  for pyr id i r i e  s e r v e  as a r e p r e s e n t a t i v e  

14 

exair.ple : 
q F r o t o n a t i o n  S h i f t s  (+ = d o w n f i e l d )  

c-LI +262 Hz 
C- 3 t 8 7  Hz 

__________ 

C-3 -185 HZ 
S i m i l a r l y  p h e n o l a t e  i o n s  when c r o t o n a t e d  produce c h a r a c t e r i s t i c  r i n g  

ca rbon  r e sonance  sh i f t : ; ,  as t y p i f i e d  bv t h e  u n s u b s t i t u t e d  p h e n o l a t e  

1011 : 

h o t  ona t  i o n  Sh i f  t s - 
c -377 HZ 

-91 HZ 
0 112 

C t 1 5 5  Hz 

i 
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Although t h e  a b s o l u t e  magnitude of t h e  pro tona t ion  s h i f t s  i n  phenols  

and p y r i d i n e s  vary somewhat with t h e  i n t r o d u c t i o n  of r i n g  substi- 

t u e n t s 1 4  t h e  observed t r e n d s  are g e n e r a l l y  fol lowed.  

We have s t u d i e d  t h e  4-pyridone t-+ 4-hydroxypyridine ques t ion  

by t a k i n g  t h e  deprotonated a n i o n  of t h i s  comDound i n  DTO (pH 1 3 . 5 )  

and have added succ.essively one equiva len t  of a c i d ,  t h e n  a second, 

t o  t h i s  s p e c i e s .  The carbon-13 p r o t o n a t i o n  s h i f t s  a s s o c i a t e d  with 

each p r o t o n a t i o n  s t e p  were a o n i t o r e d .  

a r e  summarized below: 

The experimental  f i n d i n g s  

TABLE 2 

I 3 C  Pro tona t ion  S h i f t s  (Hz) for 0- ( p o s i t i v e  = downfield)  

Pro tona t  ion S h i f t s  

c-2 c-3 c-4 

1st equiva len t  of a c i d  -255 +14 +142 

2nd e q u i v a l e n t  of a c i d  -78 -66 -227 

These d a t a  can be i n t e r p r e t e d  on t h e  scheme 

I 
0 

(j N 

f i r s t  & 3 
equiva len t  

N 2  3 

OH 
, 

I 

second ' e q u i v a l e n t  

I 3) 
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i v a l e n t  of ac id  ;;i-od:ices 3 C  p r o t c n a t i c n  s h i f t s  

The c-2 iiidicdLivc of predomlnanr  p y r i d i n t ?  n i t - r cgen  p r o t ( m d t i o n .  

and C - 4  ; ) ro tona t ion  s h i f t s  resenLle q i i i t e  c l o ~ t . l y  t h e  d a t a  for  the 

n o d c l  system, p y r i d i n e  ; r h e  C-11 r e s o n a n c e  should be most s e 7 s i t i v e  

tc> oxygen p r o t o n a t i o n  sk-ows t h e  op:cs;te d i r e c r i o n  p r o r s n a t i o n  shift 

- v s  p h e n o l  C:. 

ated siecies, t h e  4-pjrridone (X) or i t s  vescnancc h y b r i d  ( X I ) ,  i n  

-;quec,us s o l u r i o n .  The 4 - p y ~ " i o n e  formnlat  ion h a s  been r e p o r t e d  t o  

predominatc  i n  o t h c r  non-aqueous svs tems. 

A d d i t i o n  of  a secon? equ iva le r i t  of acil g i v e s  p r o t o n a t i o n  

Thus t h e  p r o t o n a t i o n  shifts f z v o r  a n i t r o g e n  p-oton- 

11,13 

s!riIts indfcarive of  oxygen p r o t o n a t i o n ,  qu i t e  l i k e  p h e n o l a t e  i c n  

itself. I t  i s  n o t  p o s s i b l e  from t h i s  d a t a  t o  conc lude  which micro- 

scopic.  p r o t o n a t i o n  s t e p  b e s t  d e s c r i b e s  o w  f i n d i n g s ,  (XI) + (XIII) or 

(Y) + (XI I I ) ,  a l t h o u g h  t h e  p r o t o n a t i o n  s h i f t s  of C-4 and C-3 

r e semble  s t r o n p l y  t h o s e  of Ci and C, i n  The p h e n o l a t e  i on  p r o t o n a t ' o c .  
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